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Thermal convection driven by centrifugal buoyancy in a rapidly rotating narrow
annular channel is studied in the case of rigid cylindrical walls. The pattern of
high-wavenumber thermal Rossby waves becomes increasingly modulated and finally
chaotic as the Rayleigh number is increased. Retrograde as well as prograde mean
zonal flows are found. The prograde mean flow dominates in fluids with large Prandtl
number, while retrograde mean flows are more typical for small Prandtl numbers.
Although the basic thermal Rossby waves travel in the prograde direction when the
height of the annulus decreases with distance from the axis, their long-wavelength
modulations often propagate in the retrograde direction.

1. Introduction
Convection driven by centrifugal buoyancy in an annular gap with conical end

boundaries between a cooled inner and a heated outer cylinder rotating rigidly about
their common axis has long been used as a simple model for the dynamics of
convection in rotating spherical shells which is of interest for many planetary and
stellar applications. In the limit of small deviations of the cones from planar surfaces,
the annulus model permits a reduction of the general three-dimensional problem to
a two-dimensional problem which can be analysed in terms of Cartesian coordinates
when in addition the small gap approximation is used (Busse 1970, 1986). Convection
starts with the onset of thermal Rossby waves travelling in the prograde azimuthal
direction when the height of the annular channel decreases with increasing distance
from the axis. As the Rayleigh number grows various instabilities set in, such as
the mean-flow instability, the vacillation instability and others (Busse & Or 1986;
Schnaubelt & Busse 1992; Brummell & Hart 1993; Abdulrahman et al. 2000) and
finally chaotic convection arises.

Usually the problem of nearly geostrophic convection in a rotating annulus is
investigated in the case of stress-free boundaries on the cylinder walls. But for
comparisons with laboratory experiments it is important to take into account
realistic boundary conditions on those walls. Even for applications to the problem
of convection in spherical fluid shells no-slip conditions may be appropriate as for
example in the region adjacent to the tangent cylinder touching the rigid inner sphere
at its equator. For these reasons no-slip boundaries will be assumed in this paper.

Of particular interest in the problem of convection in a rotating annulus is the
mean zonal flow generated by the Reynolds stresses of convection. This component
of the velocity field appears to be rather sensitive to the boundary conditions. In
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high-Rayleigh-number turbulent convection the mean zonal shear can become so
strong that it disrupts the convection flow entirely. As shown in the simulations of
Brummell & Hart (1993) relaxation oscillations of the mean flow component result
corresponding to episodic convection. The latter occurs only for a brief period once
the mean shear has decayed sufficiently due to viscous friction. During the short-lived
convection bursts the Reynolds stress and thus the mean flow grow rapidly together
with the amplitude of convection until the shear causes the decay of the latter. This
same process has been found in simulations of convection in rotating spherical shells
(Grote & Busse 2001) and it may play a fundamental role in the dynamo process
since a magnetic field tends to eliminate the relaxation oscillations. For this reason
it is of interest to study the relaxation oscillations in a laboratory experiment. One
motivation for the analysis of this paper has thus been the question of whether
relaxation oscillations can still be realized in the presence of rigid boundaries.

Another motivation has been the question of low-wavenumber instabilities of
high-wavenumber rolls. The stability of high-wavenumber roll-like convection can
be investigated with asymptotic methods as has been done by Abdulrahman et al.
(2000) and others. Since those methods usually do not allow a straightforward
consideration of low-wavenumber modulational instabilities it is of interest to study
them numerically as will be done in this paper.

2. Basic equations and numerical methods
We consider a cylindrical annulus of average height L with the temperatures T1 and

T2 prescribed on the inner and outer cylinders, respectively. The entire configuration
is rotating rigidly with angular velocity Ω about its axis. Using the small-gap
approximation with the gap width D as length scale and D2/ν as time scale, where ν

is the kinematic viscosity of the fluid and T2 −T1 as scale of the temperature, we arrive
at the following system of equations for the stream function ψ and the deviation
Θ of the temperature from the purely conducting profile (see, for example, Busse
1986): (
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where �2 ≡ ∂2/∂x2 + ∂2/∂y2 and the Rayleigh number Ra, the Prandtl number Pr
and the Coriolis parameter η are defined by
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Here γ is the coefficient of thermal expansion, κ is the thermal diffusivity and r0 is
the mean radius of the annulus. A Cartesian coordinate system has been introduced
with the x-, y- and z-coordinates oriented in the radial, azimuthal and axial directions,
respectively. The term involving η arises when the equation for the z-component of
vorticity, �2ψ , is averaged over the height of the annulus and the condition that the
normal component of the velocity vanishes at the boundaries,

z = ± L

2D
∓ η0x, (2.3)

has been taken into account together with the assumption η0 � 1. Through this
procedure we have reduced the original equations for the three-dimensional velocity
field (u, v, w) to an equation for its dominating two-dimensional geostrophic
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component, u = ∂ψ/∂y, v = −∂ψ/∂x, described by the stream function ψ . In order to
solve (2.1) in the realistic case of no-slip cylindrical boundaries at which the conditions

∂

∂y
ψ =

∂

∂x
ψ = Θ = 0 at x = ± 1

2
(2.4)

are imposed, we introduce the Galerkin representation
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where the functions fl(x) denote the Chandrasekhar functions (Chandrasekhar 1961).
By adding the last term on the right hand side of (2.5), which represents the component
of a Poiseuille-flow-type mean flow, we have accommodated the fact that instead of
a vanishing zonal mass flux through the annulus the absence of a mean pressure
gradient in the azimuthal direction must be required, satisfied when a00(t) obeys the
equation

∂
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For details we refer to earlier papers on the subject (Schnaubelt & Busse 1992;
Herrmann & Busse 1998). The amplitude a00(t), referred to as the Poiseuille-flow
coefficient in this paper, turns out to be a useful quantity for characterizing the
solutions of the problem.

By projecting the equations for ψ and Θ onto the respective expansion functions,
a system of ordinary differential equations for the coefficients âln(t), ǎln(t), b̂ln(t) and
b̌ln(t) is obtained. For the numerical solution of this system of equations a truncation
scheme must be introduced. We shall neglect equations and corresponding coefficients
when the subscripts satisfy the inequalities l > Nx and n > Ny , where the truncation
parameters Nx and Ny must be chosen sufficiently large such that the physically
relevant properties of the solution do not change significantly when Nx or Ny are
replaced by Nx − 2 or Ny − 2, respectively. In order to allow for long-wavelength
modulations the basic wavenumber must be chosen sufficiently small such that results
obtained for a given chosen value α do not differ significantly from those obtained
for α/2. Most of the computations reported in the following have been done with
α = 0.5, Nx =19 and Ny = 144.

In order to analyse the mean zonal flow and the temperature field, the following
azimuthally averaged velocity v0 and temperature Θ0 are used:

v0(x, t) =
1
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1
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0
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where l is the periodicity length l =2π/α and Ψ0 is the mean stream function. In
order to focus attention on the dependence of the properties of convection on the
parameters R and P at high rotation rates we restrict most of the analysis to the case
η =32000.

3. Nonlinear evolution of convection and its mean flows
From weakly nonlinear analysis (Busse & Or 1986) it is known that convection in

the form of thermal Rossby waves is associated with a mean flow which is symmetric
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Figure 1. Results for Pr= 0.71 and η = 32000 at different Rayleigh number. (a) The mean
velocity v0, (b) the Poiseuille flow coefficient a0,0 and (c) the Reynolds stress uv. The thin solid
curve, dark dot curve, thick solid curve, short dashed curve and long dashed curve are for
Ra= 6 × 105, 6.01 × 105, 6.03 × 105, 6.04 × 105 and 6.05 × 105, respectively.
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Figure 2. The Poiseuille-flow coefficient a00 for (a) Pr =0.28, (b) 0.71 and (c) 6.7. The thin
circle, thick diamond and thick square represent stationary solutions, periodic solutions and
aperiodic solutions in terms of the coefficient a00. For unsteady solutions a00 is averaged over
a long time span.

with respect to the mid-plane of the channel. In the analysis of Busse & Or (1986)
stress-free boundary conditions were used. But when the appropriate constant is
added such that the mean flow vanishes at the boundaries it is evident that its
direction is retrograde throughout the channel. This behaviour is also seen in the
computations at the Prandtl number Pr= 0.71, as shown in figure 1. We have plotted
the Poiseuille coefficient a00 in figure 1(b) since it provides a good measure for the
maximum amplitude of the mean zonal flow as can be seen from comparison of
figures 1(a) and 1(b). As the Rayleigh number is increased the retrograde mean zonal
flow reverses to a prograde one. In order to understand this phenomenon we consider
the Reynolds stress uv which generates the mean zonal flow. As shown in figure 1(c)
the radial derivative of the Reynolds stress changes sign at the mid-plane with
increasing Rayleigh number, which leads to the change of the mean velocity profile
from a concave to a convex shape.

The Prandtl number dependence of the mean zonal flow is indicated in figure 2,
which illustrates that solution branches with prograde and retrograde mean flows
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Figure 3. The mean velocity profiles at periodic states for (a) Pr= 0.71 and Ra= 6.5 × 105,
ω = 139.4, (b) Pr = 0.28 and Ra= 2.8 × 105, ω = 133.6, and (c) Pr = 6.7 and Ra= 1.7 × 106,
ω = 7.4. The solid and thick solid curves in figures are obtained at t = 0 and t = π/ω, respectively.

can be found for Prandtl number of order unity. For Pr =0.28 only retrograde mean
flow has been found, while for Pr =6.7 the mean flow is prograde in the range of
Ra that has been investigated. This result contrasts with the small retrograde mean
flow found in the weakly nonlinear analysis of Busse & Or (1986) for stress-free
boundaries.

The branches of solutions in figure 2 show only examples of all those found in the
computational simulations. Since the wavenumber nα of the dominant convection
mode in the representation (2.5), (2.6) may vary within a finite interval at Rayleigh
numbers above the critical value, numerous solutions exist for given values of the
external parameters. In addition many more unstable solutions exist which, of course,
could not be obtained with our computational scheme. We shall first focus on the
case Pr = 0.71 where the most detailed investigation has been performed. The drifting
symmetric thermal Rossby waves with n= 41 are stable only up to a value of Ra
of about 6.2 × 105 where a transition to one of the two mean flow solutions (MFC)
occurs (Or & Busse 1987), characterized by an asymmetric but steady mean flow
profile. At the slightly higher value 6.3 × 105 of Ra the transition to vacillating
convection (VC) occurs which is also known from earlier analysis for lower values
of η (Schnaubelt & Busse 1992). In this form of convection the mean flow solution
oscillates between its asymmetric form and a more symmetric form with the angular
frequency ω = 87.27. Abdulrahman et al. (2000) denote the two vacillating solutions
by Pa1 and P

′

a1. These two solutions cannot be continued beyond Ra = 6.5 × 105 and
are replaced there by a symmetrically oscillating solution which we call oscillating
mean flow convection (OMFC). Abdulrahman et al. (2000) have denoted this solution
by Ps . The oscillation of the mean flow profiles is shown in figure 3(a). While this type
of mean flow solution was obtained for a n= 41 as well as n= 40 of the dominating
mode, a different scenario develops with n= 39 at about Ra = 6.4 × 105. A branch
of convection called modulated mean flow convection (MMFC) appears as shown in
figure 2(b), displayed in figure 4(a). In contrast to OMFC convection which alternates
between the two mean flow solutions in time, MMFC convection alternates between
the two mean flow solutions in space. As a consequence the mean zonal flow remains
steady and symmetric. The original ‘mean flows’ of the two parts of the solution
now correspond to circulations with the wavelength of the modulations as shown in
figure 4(b). We call this type of convection ‘stationary’ because its mean properties
do not change in time while the pattern propagates relative to the rigid walls. The
pattern is not steady, however, even relative to a moving frame of reference since
the small-scale convection and its large-scale modulation drift at different rates. In
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Figure 4. The non-axisymmetric part of the streamlines, ψ − Ψ0 = const., with (a, c) prograde
mean flow and (e, g) retrograde mean flow are shown for Pr = 0.71. The circulation patterns
corresponding to the modulation wavelength are shown in (b), (d), (f ) and (h): streamlines
corresponding to the terms of expression (2.5) with n= 2, 1, 1 � n � 3, 5 have been plotted,
respectively. The Rayleigh numbers are 6.5 × 105, 7.1 × 105, 6.7 × 105 and 7 × 105 for (a, b),
(c, d), (e, f ) and (g, h), respectively. The corresponding velocities with which the modulations
propagate are −175, 850, −288 (−174), and −190, respectively. The value in case (f ) refers to
the outer layer, while the value for the inner layer is given in the brackets. Solid and dotted
lines indicate positive and negative values, respectively.
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Figure 5. (a) The mean velocity profiles and (b) the mean temperature profiles of stationary
solutions for Pr = 0.71. The thick solid line is for Ra= 7 × 105(SMDLC), and the thin solid
line is for 7.1 × 105(HC convection).

all cases except figure 4(d) the modulations propagate in the retrograde direction
with relatively high phase velocities of the order 200. This value is not only large in
comparison to the maximum absolute value of the mean zonal flow, but also exceeds
the group velocity of the thermal Rossby waves.

As the Rayleigh number is increased further, solutions with time-periodic and
aperiodic Nusselt number appear. But at still higher values of Ra stationary forms
of convection reappear. These solutions are characterized by the combination of
single-layer and double-layer convection as shown in figure 4(c). We call this pattern
hybrid convection (HC). In addition to the prograde mean zonal flow an alternating
large-scale circulation exists as indicated in figure 4(d).

For the branches with retrograde mean zonal flow we also observe double-layer
convection. But the modulations of the outer and inner parts are no longer necessarily
correlated as the example of figure 4(e) demonstrates. Here an α =1 modulation
coexists with an α =1.5 modulation. Since the drifts of the outer and inner parts are
no longer synchronous the solution becomes time periodic. We shall call this type of
convection asynchronously modulated double-layer convection (AMDLC). The mean
flow for this type of convection is slightly asymmetric and oscillates a little. Often, of
course, the modulations of the inner and outer parts of the double layer have the same
wavenumber such that a stationary drifting pattern of convection is obtained as shown
in figure 4(g). This kind of convection will be called synchronously modulated double-
layer convection (SMDLC). The profiles of the mean zonal flow and of the mean
temperature of this type of convection are shown by the thick lines in figure 5. The
large-scale circulation patterns for AMDLC and SMDLC are shown in figures 4(f )
and 4(h), respectively.

Besides the stationary and time-periodic solutions, quasi-periodic and chaotic
solutions are found, especially at higher Rayleigh numbers beyond about 8 × 105.
Examples for the time dependence of the Nusselt number are shown in figure 6. But the
spatial structure of these solutions is difficult to characterize without a large number
of plots. It appears that a combination of large-scale and small-scale changes occurs in
the structure of convection. These changes may correspond to the bifurcations studied
by Abdulrahman et al. (2000) in their asymptotic analysis of the small-scale convection
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Figure 6. Nusselt number Nu as a function of time t for Pr = 0.71 at different Rayleigh
numbers for the case of prograde mean flow. The Rayleigh numbers for the curves from
bottom to top are 6.2 × 105, 6.3 × 105 (VC), 6.5 × 105 (OMFC), 6.6 × 105 (MMFC), 6.7 × 105

(MMFC), 7.1 × 105 (dashed-dotted line, HC), 7.17 × 105, 7.5 × 105 and 8 × 105, respectively.

rolls. But through the additional frequencies introduced by the large-scale modulations
a much more complex time-dependence is obtained.

For Pr = 0.28 the thermal Rossby waves typically set in with n= 33 and are soon
replaced by a modulated stationary solution of the hybrid type as Ra increases beyond
its critical value. The streamline pattern thus resembles that of figure 4(c). As in the
latter case the modulation corresponds to the wavenumber α = 0.5 and travels in the
prograde direction. For Ra =2.68 × 105 the speed reaches 625.

As the Rayleigh number is further increased two types of time-periodic solutions
can be found. In both cases the solutions are asymmetric, i.e. there exist two forms
of the solutions which obey reflection symmetry with respect to the mid-plane of
the layer. For the lower values of a00 in figure 2(a) the convection flow switches
periodically between a state close to the original Rossby waves and the mean flow
solution in which convection is concentrated towards one side of the channel (Or &
Busse 1987). This solution thus corresponds to vacillating convection (Schnaubelt &
Busse 1992) except that a slight modulation with α =0.5 is present. Accordingly, the
mean flow profile is asymmetric as shown in figure 3(b).

For the higher values of a00, i.e. smaller |a00|, there are two dominant modes
corresponding to wavenumbers nα with n= 32 and 33. The hybrid type of convection
becomes periodically stronger in this case on one side of the channel which again
leads to an asymmetric mean flow similar to the one shown in figure 3(b), but with a
smaller amplitude and lower frequency of ω = 83.5 at Ra = 2.79 × 105. The modulation
with α = 0.5 is much stronger in this case as follows from the interference of the two
dominant modes.

As the Rayleigh number reaches values of the order of 3.2 × 105 the convection
returns to a symmetric stationary form of the type SMDLC that has been discussed
above and is illustrated in figures 4(g) and 4(h). The modulation wavenumber tends
to be somewhat larger than for Pr= 0.71, but the retrograde propagation speed of
the modulation is of the same order. For Ra = 3.4 × 105 its value is −250.

For Pr = 6.7 a direct transition from thermal Rossby waves into a modulated time-
periodic state of convection occurs. This state is similar to the state SMDLC with the
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amplitude increasing and decreasing periodically on one side of the channel or the
other. Accordingly, the profile of the mean flow also changes periodically between
its two extreme positions as indicated in figure 3(c). With increasing Ra the periodic
convection state soon changes into an aperiodic one as indicated in figure 2(c).

4. Concluding discussion
The analysis of § 3 has demonstrated that a rather rich scenario of spatio-temporal

patterns is obtained for centrifugally driven convection in a rapidly rotating cylindrical
annulus. The presence of rigid cylindrical walls somewhat suppresses the mean zonal
flow such that the relaxation oscillations of the stress-free case (Brummell & Hart
1993) have not been found. Note that the relaxation oscillations are also suppressed
when the sidewalls are still stress-free, but the conical end surfaces are rigid such
that Ekman layer suction tends to damp the mean shear as in the annulus problem
treated by Jones, Rotvig & Abdulrahman (2003). The various forms of modulations
identified in the present paper are of considerable interest, however, and should be
an attractive subject for a laboratory investigation. Because of the loss of symmetry
with respect to the mid-plane in experimental configurations, some of the bifurcations
mentioned in this paper will become imperfect. But the variety of patterns should
still be observable when the small gap annulus is approximated.

The basic small-scale convection rolls are not strongly influenced by the nature of
the boundary conditions at high values of η. But the mean flow and some of the
modulational instabilities are affected. Nevertheless, SMDLC convection compares
well with the pattern that Brummell & Hart (1993) obtained for stress-free walls in
their figure 9(f ). However, the ‘double layer’ patterns corresponding to their figure 6
could be obtained in the present computations only for α � 1 in agreement with
the value α = 1 used by Brummell & Hart (1993). The ‘double-layer’ convection
disappeared when α is lowered to 0.5.

The computational study of this paper is restricted by the lowest value of α for
which solutions with sufficiently high numerical resolution can be obtained. In some
cases it is evident that the modulation instability with the lowest possible value of
α will occur first. This is also evident when results obtained for α = 0.25 shown in
figure 7 are compared with those obtained for α = 0.5 shown in figure 6. Except for
minor quantitative differences the solutions obtained for the two values of α are the
same and the sequence of transitions remains unchanged. Quasi-periodic and chaotic
solutions usually occur at lower values of Ra for α =0.25 than for α = 0.5 as expected
since this replacement doubles the number of degrees of freedom of the system.

Sometimes a branch of solutions obtained for a higher value of α disappears
altogether when α is lowered as has been noted above. Another example is found for
Pr = 0.28. Here a branch of stationary solutions with prograde mean flow was found
with α =2.0 for Ra � 3.3 × 105. But this branch became unstable and switched to the
solutions with retrograde mean flow when α was halved.

An unexpected result is that the pattern sometimes changed from a periodic one to
a stationary one or from a quasi-periodic one to a periodic one when α was replaced
by α/2. Since this replacement doubles the number of degrees of freedom of the
system the opposite change might have been expected. But, apparently, the increased
number of degrees of freedom can also facilitate the transition of convection to its
optimal state.

Finally we note that computations have been extended to the case η = 24000 for
Pr = 0.71 in order to demonstrate that the results reported in this paper are indeed
representative for the case of high η. All the branches referred to in figure 2(b) have
been found in that case as well, but the frequencies and the modulation wavelengths
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Figure 7. Nusselt number Nu as a function of t for Pr = 0.71 at different Rayleigh number
for the branch with prograde mean flow calculated with half the α value used in figure 6. The
curves from bottom to top correspond to Ra= 6.2 × 105, 6.3 × 105 (VC), 6.5 × 105 (OMFC),
6.6 × 105 (MMFC), 6.8 × 105 (HC), 7.0 × 105 and 7.5 × 105, respectively.

are lower. The onset of thermal Rossby waves occurs at Ra =4.15 × 105 and the
branch with prograde mean flow follows the same sequence of transitions as indicated
in figure 2(b). The frequency of vacillation starts with ω = 55.6 and assumes the
value ω =96.6 for the OMFC-solution at Ra = 4.4 × 105. Branches with retrograde
mean flow also exist. The SMDLC-solution at its onset at Ra = 4.8 × 105 is now
characterized by a modulation wavenumber of 3.5 and a drift rate of −100 instead
of the values 2.5 and −190 as in the case of figure 4(g, h).

This work is partially supported by the A.-v.-Humboldt Foundation. Professor
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